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Codon distributions in DNA
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The codons, 64 in number, are distributed over the coding parts of DNA sequences. The distribution
function is the plot of frequency versus rank of the codons. These distributions are characterized by parameters
that are almost universal, i.e., gene independent. There is but a small part that depends on the gene. We present
the theory to calculate the universal~gene-independent! part. The part that is gene-specific, however, has
undetermined overlaps and fluctuations.
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I. INTRODUCTION

The methods of statistical linguistics are used in rec
years to study DNA sequences@1#. The genome projects gen
erate large volumes of data on DNA. Fast and reliable co
putational tools to analyze this huge data of billlions of ba
are required. The idea is to identify features in the sequen
and to correlate them with known biological functions. T
methods of statistical linguistics@2# could provide reliable
computational algorithms. This is what we investigate he

The sequences are made of the nucleotide basesA, C, G,
and T. The arrangement of the bases over the linear ch
determines all the information there is in DNA. The regio
that code for proteins, the coding regions~or the exons!,
have bases working in groups of three to make prote
These triplets are called codons. The biologically meaning
words are these codons. The noncoding parts consist o
introns and the flanks. These are presumed importan
regulatory and promotional activities. The biological
meaningful word structures in these regions are not kno
A gene generally comprises a number of exon regions s
rated by introns. Since the biological functions thus far
associated with the triplet codons, we concern ourselves
with these triplet words, the codons. Therefore, in our ana
sis, instead of an entire gene, we consider the coding D
sequence~CDS! region of the gene, where the exon segme
are put together, splicing the introns out.

Natural languages are characterized by structures d
mined by rules of grammar. The words put together w
these rules carry sense. The rules give coherence and m
ing to long texts. The languages have this long-range or
The frequency spectra show the presence of the long per
These are identified by the 1/f b-type behavior in the low
frequency region@3#. Words placed at random will hav
quite a different frequency spectrum with no long-range
havior. The early work on natural languages dealing with
statistical distributions of words, done by Zipf@4#, assigned
ranks to the words. The word most frequent has rank51; the
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next most has rank52, and so on. Zipf showed that for natu
ral languages the plot of frequencyf n versus rankn is of the
power-law form

f n5
f 1

na
, ~1!

where f 1 is the frequency of rank one. In the Zipf’s origina
analysis the power indexa was assumed to be one. Subs
quent studies have allowed for deviations from one.

The DNA sequence of the lettersA, C, G, andT does have
a 1/f b frequency spectrum@5#. It is possible, therefore, tha
the sequences have long-range order and underlying g
mar rules. The opinion on this issue remains divided@6#.
Some have taken the view that DNA is languagelike@7#. In
the coding regions the long periods have a lower incide
than in the noncoding parts. The Zipf-type fits in the DN
regions~with overlappingn-tuples! have shown that the in
dex a is higher in the noncoding segments over the cod
ones. The averageda over several overlappingn-tuples is
nearer to the value for natural languages for noncoding s
ments than the coding ones@1,7#.

The body of evidence presented in support of the l
guagelike features of DNA has remained ambiguous@8#. For
one thing it is not known how the power-law Zipf-behavi
of natural languages is connected to the long-range corr
tions @9#. It is known, for instance, that pseudorandom s
quences satisfy Zipf behavior. Further, it is known that t
frequencies ofA, C, G, andT vary somewhat more for the
introns and the flanks over the exons@10#. The ‘‘long-range’’
order that is observed for these noncoding regions may b
outcome of the frequency differences. The higher value
the Zipf index for the noncoding segments may again
ascribed to these differences in the frequencies of the ba

The importance of statistical linguistics as a compu
tional tool remains insufficiently explored for DNA se
quences. While the Zipf law is probably not connected to
deeper features of languages such as the universal gram
the coherence, and the long periods, it could still be use
For instance, the indexa of languages could be~and is! used
in computer algorithms to identify authors. The texts gen
ated by authors vary slightly in their Zipf index. The inde
therefore, identifies the author. Could one use similar al
©2001 The American Physical Society08-1
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A. SOM et al. PHYSICAL REVIEW E 63 051908
rithms to identify regions from the genome segments a
relate them to their biological functions?

As precision and reliability are important we hav
weighed the merits of power-law fits over exponential fi
Since we are solely concerned with nonoverlapping 3-tup
~i.e., the codons!, we find the exponential fits have consi
tently lowerx2. @Chi-square (x2) is the sum of the ratio of
the squared difference between the observed value at thi th
point (oi) and the expected value at thei th point (ei) to the
expected value at thei th point (ei), i.e., x25( i(oi
2ei)

2/ei , where the sumi runs over the number of points o
the fit. The value ofx2 depends on the total number of poin
to be fit minus one, sometimes called the degree of freed
~df!.# The exponentials, therefore, provide better fits. T
the power-law fits for DNA sequences are worse than
exponentials have also been observed by others@11#. The
power law of Zipf is characterized by two parameters,
index a and the frequency of rank one, i.e.,f 1. The number
of parameters for the exponential fit is of interest to us. T
Zipf’s law is used to find the relationship connecting vocab
lary to the text length. Such a connection does exist for
exponential fit as well.

The parameters of the exponential rank-frequency rela
depend crucially on the text length. Once this paramete
known, the approximate length of the segment gets know
well. Indeed, the exponential fits are largely determined
two quantities, the frequency of rank 1, i.e.,f 1 and the text
length of the sequence. There is, however, a small part th
characteristic of the gene. This signature of the gene is
tentially useful in generating algorithms to identify the ge
and relate to the biological functions.

II. THE APPROACH

Out of the four basesA, C, G, andT we have 43434
564 possible triplets. Three combinations, namely,TAA,
TAG, and TGA, are the stop condons. Thus 6423561 is
the meaningful vocabulary. The most frequent codon
rank n51, the next most hasn52, and so on. We define
frequencyf of a particular codon as the number of times
appears in the sequence.~Note this definition is different
from some of the references wheref n5number of words of
rank n/total number of words.! The frequency of rankn is
f n . Here both frequency~f! and rank~n! are dimensionless

Observations on the CDS reveal that many codons m
have the same frequency. Note that the CDS’s we are dea
with are relatively short sequences of several hundred to
eral thousand bases. This problem of multiple codons hav
the same frequency is called frequency degeneracy.

First, as we consider only codons, 61 in number, the pr
lem of saturation of vocabulary for large text length is cle
However, for most genes we observe that the actual usag
codons is smaller than 61. The codon usage is someti
referred to as the vocabulary, i.e., the total number of diff
ent codons, used in the CDS.

From the Zipf’s law@Eq.~1!# with a51 we have

ln~ f n!5 ln~ f 1!2 ln~n!.
05190
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If we plot ln(f n) vs ln(n) we have a straight line with slop
-1 and we intercept on they axis at ln(f 1). Clearly, the maxi-
mum rank is just equal tof 1. Whena deviates from 1,f 1
and the maximum rank are connected to each other thro
a. The maximum rank~i.e., the vocabulary! along with f 1
~or a) determine the text length l, i.e., the total number
triplets, as follows:

l 5 f 11 f 21 f 11 f 31•••1 f n

5 f 1S 11
1

2a
1

1

3a
1•••1

1

naD .

Thus,a may be thought of as a function off 1 and the text
length l. We want to arrive at the corresponding relation f
our exponential fits.

III. THE EXPONENTIAL FIT

All the degenerate frequencies are assigned different r
numbers. Thus ifCCG andCAG have the same frequenc
of occurrence they belong to two different ranks~one follow-
ing the other! in our work. Therefore, here too, the codo
usage, maximum rank, and vocabulary are synonymous.
exponential function that connects frequency to rank is

f n5 f 1 exp$2b~n21!%, ~2!

whereb, a dimensionless constant for a particular gene, is
be determined from the fit.

We have tried this fit function on over 300 CDS’s. Th
CDS’s are sourced from the EMBL@12# and the GenBank
@13# data bases. Table I gives the values ofb for some of the
sequences under study. The plots showing the fit are in
1.

The indexb in the exponential of Eq.~2! takes different
values for the genes. It turns out, however, thatb is not
completely a free parameter. Indeed, from Table I we no
that CDS’s that have text lengths and alsof 1 that are close
have similar, though not identical,b values. Notice, for in-
stance, theb-globin CDS from the chicken and the clawe
frog have the samel and f 1, 147 and 9, respectively, wherea
the lysozyme CDS from the fish,Cyprinus carpio, has 146 as
l and 9 asf 1. The b values for theb-globin CDS of the
chicken and the frog are 0.057 73 and 0.057 72, while
lysozyme CDS, though functionally quite unrelated to t
b-globin, has theb value of 0.060 56. So the value ofb is
determined to a considerable extent byf 1 and the text length
of the sequencel. There is only a part inb that is character-
istic of the gene.

IV. PLOT OF b VS F 1

Figure 2 gives plots ofb vs f 1 for four complete CDS
codings for a-globin, b-globin, phosphoglycerate kinase
and globulin proteins. Thex2 values indicate that the rela
tionship betweenb and f 1 is linear to a good approximation
The plot for each CDS involves data on the gene from d
ferent species. These are sourced from GenBank. Each o
linear plots are specific to the gene. The evolution of
8-2
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TABLE I. The b values for some CDS’s from different organisms. Thel and f 1 stand for the total number of the triplet codons and t
frequency of the most frequent codon, respectively. Thex2 value signifies how good the fit is and the degrees of freedom, denoted b
is simply one less than the total number of ranks. ThebTh andb8 are explained in Eq.~10!.

Protein Organism Accession no. l f 1 b x2 df bTh b8

a-globin Ark clam X71386 151 7 0.04221 0.137 52 0.0405 1.0415
Rainbow trout D88114 144 9 0.05893 0.202 43 0.0571 1.032

Cyprinus carpio AB004739 144 10 0.06890 0.450 45 0.0645 1.0691
Black rockcod AF049916 144 11 0.07649 0.594 41 0.0719 1.064

Duck J00923 143 10 0.06801 0.105 40 0.0645 1.055
Pigeon X56349 143 10 0.06872 0.155 40 0.0649 1.058
Chicken V00410 142 10 0.07251 0.893 46 0.0654 1.108

House mouse V00714 142 9 0.06037 0.192 45 0.0579 1.042
Rhesus monkey J004495 143 10 0.06568 0.353 37 0.0649 1.01

Rabbit M11113 143 10 0.06661 0.188 38 0.0649 1.0260
Norway rat U62315 143 10 0.06897 0.386 43 0.0649 1.062
Otolemur M29648 143 13 0.09286 0.727 38 0.0874 1.062

Grevy’s zebra U70191 143 13 0.09678 0.272 40 0.0874 1.106
Human V00488 143 14 0.10045 0.007 35 0.0950 1.056

Orangutan M12157 143 15 0.11022 0.487 37 0.1027 1.073
Horse M17902 143 15 0.11385 0.399 40 0.1027 1.108
Sheep X70215 143 17 0.13269 1.153 38 0.1182 1.123
Goat J00043 143 17 0.13675 1.432 41 0.1182 1.157

Salamander M13365 144 9 0.06240 0.489 51 0.0571 1.092
Clawed frog X14260 142 10 0.07394 0.411 48 0.0654 1.130

b-globin Atlantic salmon X69958 149 11 0.07382 0.543 43 0.0694 1.064
Clawed frog Y00501 147 9 0.05772 0.196 45 0.0559 1.032

Chicken V00409 147 9 0.05773 0.324 46 0.0559 1.0327
House mouse V00722 147 8 0.05075 0.099 46 0.0488 1.041

Rabbit V00882 146 9 0.06091 0.133 46 0.0563 1.0817
Rat X06701 147 10 0.06849 0.545 43 0.0631 1.0856

Oppossum J03643 148 12 0.08164 2.183 45 0.0771 1.059
Sheep X14727 146 12 0.08413 0.351 39 0.0782 1.076
Goat M15387 146 13 0.09558 0.406 42 0.0856 1.1170

Lemur M15734 148 14 0.10743 1.375 42 0.0917 1.1715
Human AF007546 148 15 0.11245 1.530 39 0.0991 1.134

Insulin Salmon J00936 106 7 0.06425 0.490 45 0.0582 1.104
Clawed frog M24443 107 8 0.07922 0.841 46 0.0676 1.172

Syrian hamster M26328 111 9 0.08656 0.703 42 0.0747 1.159
Guinea pig K02233 111 9 0.09220 0.815 45 0.0747 1.234

Owl monkey J02989 109 13 0.14189 1.667 39 0.1162 1.221
Octodon degus M57671 110 12 0.14122 1.322 44 0.1050 1.3449

Rat J00747 111 12 0.14785 2.192 44 0.1040 1.421
Human J00265 111 13 0.17379 2.795 42 0.1240 1.401
Rabbit U03610 111 18 0.21253 2.940 32 0.1648 1.289

Globulin Pig AF204929 413 18 0.03901 0.860 58 0.0420 0.928
Bovine AF204928 412 19 0.04173 1.227 57 0.0446 0.934

Djungarian hamster U16673 400 25 0.06195 5.871 59 0.0618 1.00
Norway rat NM_012650 404 26 0.06505 7.256 59 0.0638 1.019

House mouse NM_011367 404 28 0.07215 9.484 58 0.0691 1.04
Human NM_001040 403 33 0.09463 18.202 60 0.1112 0.851
Rabbit AF144711 399 39 0.12568 19.189 60 0.0998 1.259
051908-3
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TABLE I. (Continued).

Protein Organism Accession no. l f 1 b x2 df bTh b8

Heat shock Babesia microti U53448 646 35 0.05127 0.867 55 0.0540 0.94
protein 70 Pacific oyster AF144646 660 36 0.05235 1.576 58 0.0544 0.9

Human U56725 640 40 0.06454 3.140 59 0.0628 1.02
Mouse L27086 642 38 0.06131 2.627 60 0.0593 1.03

Chinook salmon U35064 645 42 0.06640 1.533 60 0.06559 1.0
Rat L16764 642 48 0.07369 6.523 40 0.0759 0.97

Phosphorylase Human X80497 1236 51 0.03709 10.391 61 0.0413 0.
Rabbit X60421 1236 58 0.04458 7.694 61 0.0472 0.94

kinase Mouse X74616 1242 47 0.03244 8.927 61 0.0377 0.8

Glycogen Human J04501 738 44 0.05968 6.984 60 0.0599 0.9
synthase Mouse U53218 739 37 0.04718 7.113 60 0.0499 0.9

Rabbit AF017114 736 49 0.06603 3.001 59 0.0674 0.98
Rat J05446 704 28 0.03483 1.945 60 0.0391 0.89

Troponin C Chicken M16024 162 17 0.12374 1.577 45 0.1037 1.1
Human M22307 161 23 0.19581 3.333 40 0.1460 1.34
Mouse M57590 161 21 0.17806 4.565 42 0.1319 1.34
Rabbit J03462 161 24 0.19294 3.964 36 0.1531 1.26

Clawed frog AB003080 162 16 0.12250 1.370 47 0.0969 1.26

Albumin Bovine M73993 608 38 0.06437 9.754 59 0.0627 1.02
Human NM_001133 600 34 0.05643 9.235 58 0.0565 0.99

Clawed frog M18350 607 41 0.06845 15.699 56 0.0681 1.00

Lysozyme Anopheles gambiae U28809 141 11 0.08073 0.561 45 0.0734 1.09
Bovine M95099 148 7 0.04359 0.094 51 0.0414 1.05

Cyprinus carpio AB027305 146 9 0.06056 0.390 47 0.0563 1.07
Human M19045 149 7 0.04341 0.122 52 0.0411 1.05

Pig U44435 149 8 0.04946 0.503 51 0.0481 1.02

Lactate Alligator L79952 334 16 0.05460 0.441 58 0.0459 1.18
dehydrogenase Cyprinus carpio AF076528 334 23 0.07077 2.166 53 0.0680 1.04

Human U13680 333 20 0.05961 3.075 57 0.0587 1.01
Pig U95378 333 19 0.05461 2.347 57 0.0555 0.98

Pigeon L79957 334 19 0.05536 2.110 56 0.0553 1.00
Clawed frog AF070953 333 20 0.05831 2.010 53 0.0586 0.9

Phosphoglycerate Candida albicans U25180 418 34 0.08126 2.388 38 0.0821 0.99
Leishmania major L25120 418 34 0.08677 1.132 56 0.0821 1.05

kinase Mouse M15668 418 23 0.05298 1.155 58 0.0540 0.9
Rat M31788 418 23 0.05374 1.825 60 0.0540 0.99

Schistosoma mansoni L36833 417 29 0.07284 5.498 60 0.0694 1.04

Carboxypeptidase Aedes aegypti AF165923 428 20 0.04373 1.785 61 0.0454 0.96
Bovine M61851 420 22 0.05170 0.417 59 0.0512 1.00

A Human M27717 418 20 0.04477 1.128 59 0.0465 0.96
Mouse J05118 418 23 0.05124 6.547 58 0.0540 0.9
o
e-

in
any
genes, as we move higher in the evolutionary hierarchy, d
not significantly alter the overall text length of the CDS r
gions.

The slope of the globin CDS, thea and theb, are nearly
equal. As we show in the subsequent pages the value ofb is
05190
esconsiderably determined byf 1 and l. There is only a small
part that is unique to the gene. For the case of thea and the
b globins notice that the text lengths of these CDS’s vary
a small range between 143 and 147. Table I shows that
8-4
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two quite unrelated CDS’s can haveb values that are close
provided their text lengths and thef 1 are nearly equal.

The plots in Fig. 3 ofb vs f 1 keep the text lengthl fixed
at 140 for the same four genes. Though the closeness in
values of the slope indeed show the influence ofl on theb
value, the small differences indicate the presence of
l-independent part in theb value.

The fact that theb values are not completely determine
by f 1 and l, but do have a component, albeit small, comi

FIG. 2. b is plotted as a function off 1 for the natural CDS of
four different proteins from various species. The relationship tu
out to be linear.~Keys: m, slope;c, constant;sd, standard devia-
tion.!

Symbol CDS Range ofl m c sd

! a-globin 142–151 0.008320.0136 0.0029
s b-globin 146–149 0.009220.0258 0.0014
n phospho-

glycerate
kinase

417–418 0.0031 20.0169 0.0008

, Globulin 399–413 0.003620.0277 0.0022

FIG. 1. The plots of frequency~f! vs rank~n! are the exponentia
functions@Eq. ~2!#. Here different codons with the same frequen
of occurrence are given consecutive ranks. The data correspon
the a-globin CDS from Duck~Acc. No. J00923!. The b value
comes out to be 0.06801. The text lengthl of the CDS is 143;f 1 is
10.
05190
he

efrom the genes is illustrated in our next plot, Fig. 4. A num
ber of different CDS’s, each from a different organism, we
chosen and cut at three different text lengths, 30, 140,
300, i.e., we considered only the first 30, 140, and 300 t
lets, respectively, out of the whole CDS. The plot ofb vs f 1
for these three different text lengths indicates that when
text length is held fixed, but the genes are varied, the ex
nential gives a better fit over the linear. It is noteworthy th
even though the genes are unrelated in as far as their bio
cal functions are concerned, the codon distributions,
scribed by the experimental fit of Fig. 4, are not complet
unrelated.

Taken together, the two plots, Figs. 3 and 4, tell us~i!
when the text lengthl is held fixed, and the genes are n
varied, the plot ofb vs f 1 is linear and~ii ! when the text
length l is held fixed, and the genes are varied, the plot ob
vs f 1 is exponential. Thus, we conclude that the value ofb
does have a part that is gene specific.

V. PLOT OF b VS L

b, as we have observed from Table I, depends onf 1 and
l. Beyond that there is the part that is gene specific. In ot
words the parameters of the functional fit do depend, i
small way, on the gene. This dependence we discuss l
Here, in this section, we concern ourselves with the dep
dence ofb on the text length of the CDS.

We plotb vs l keepingf 1 fixed. The plots in Fig. 5 show
the dependence for four different values off 1, namelyf 157,
f 159, f 1520, andf 1538.

In plotting Fig. 5 we considered thef 1 values of the natu-
ral CDS. We had the option to cut the CDS into fragments

s

to

FIG. 3. The text length~l! is kept fixed at 140 to plotb as a
function of f 1 for the CDS of the same four proteins as in Fig.
The best fit here is a linear one.~Keys: m, slope;c, constant; sd,
standard deviation.!

Symbol CDS m c sd

! a-globin 0.0080 20.0093 0.0015
s b-globin 0.0095 20.0239 0.0013
n phosphoglycerate

kinase
0.0094 20.0167 0.0029

, Globulin 0.0097 20.0250 0.0007
8-5
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suit our value off 1. This procedure turned out to be arbitra
as thef 1 value may remain fixed over some hundred bas
Cutting into fragments is nonunique. It was, therefore, di
cult to restrict our study ofb vs l for a particular gene. For a
specific CDS~from different species! the text length does no
vary significantly in most cases. Therefore for a fixed va
of f 1 the CDS’s were searched over different genes. Thuf 1
is held fixed, but genes vary.

Though more data for each gene could have improved
result, nevertheless the relationship betweenb andl for fixed
f 1 has a linear trend. As the text length increasesb de-
creases. However, the plots for different values off 1 are not
parallel. They depend onf 1. The slope reaches a maximu
at aroundf 1510 and tends to decrease as we go away fr
f 1510 on either side. For large values off 1, the slopes tend
to become parallel.

VI. THEORY OF b

We have seen thatb depends on the text lengthl and the
frequency of rank1, f 1.

~1! When the text lengthl is held fixed, genes not varied
b depends linearly onf 1. The plot of b vs f 1 shows that
Db/D f 1 is positive.

~2! When the text length is kept fixed, but the genes
varied, the plot ofb vs f 1 shows deviations from linearity

FIG. 4. b is plotted as a function off 1 at three different values
of l. Here a number of different CDS’s from various species
chosen and cut at three text lengths 30, 140, and 300. For
lengths 30 and 140, 15 CDS’s were chosen~GenBank accession
numbers are AF007570, L37416, M16024, AF053332, AF0013
M15387, V00410, M15052, L47295, X07083, M59772, J0511
AF056080, AF170848, and M64656!, while for text length 300, 13
CDS were chosen~GenBank accession numbers are U025
AF000953, M73993, AF054895, AF076528, AF053332, M150
U65090, Z54364, U53218, AB013732, M15668, and U69698!. Un-
like Figs. 2 and 3, the exponential gives the better fit over the lin
The fit function:Y5Y01Ae(X/t).

Symbol l Y0 A t

! 30 0.0236 0.0357 2.7704
s 140 0.0324 0.0481 12.808
n 300 0.0018 0.0133 12.468
05190
s.
-

e

e

e

An exponential fit appears more appropriate.
~3! When f 1 is held fixed~genes are varied as well! the

plot of b vs l shows an approximate linear behavior.Db/D l
is negative. Note that, because of the points mentioned
lier, the variations inl ~in Fig. 5! are over a rather smal
range. As a result the fulll dependence is not clear from Fig
5.

In this section we investigateb theoretically. Let us de-
note the maximum rank bynmax. Since the frequency o
nmax is almost always one, we get

15 f 1 exp$2b~nmax21!% ~3!

or

nmax5
ln f 1

b
11. ~4!

The text lengthl is just the sum over all the frequencie
Thus,

l 5 (
n51

nmax

f 1e2b(n21) ~5!

5
f 1~12e2b(nmax21)!

12e2b
. ~6!

Substituting fornmax from Eq. ~4!, we get

l 5
f 121

12e2b
. ~7!

Thus,

FIG. 5. b is plotted as a function ofl for four different values of
f 1. For eachf 1, natural CDS’s of that particularf 1 are considered.
The relationship betweenb and l for fixed f 1 comes out to be
linear. ~Keys: m, slope;c, constant; sd, standard deviation.!

Symbol f 1 m c sd

! 7 24.8431024 0.1154 6.8931024

s 9 28.5431024 0.1841 0.0021
n 20 21.6331024 0.1133 7.1431024

, 38 21.3331024 0.1458 8.8531024

e
xt

,
,

,
,

r.
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b52 lnF12
1

l
~ f 121!G . ~8!

Since the quantityf 1 / l is small compared to one, we get
the first approximation

b5
f 121

l
1higher orders. ~9!

Equation~9! tells us~i! b vs f 1, when l is kept fixed and is
linear, the slope is positive.~ii ! b vs l, with f 1 fixed, is
hyperbolic. If the text-length variation is small we expect
approximate linear relation with negative slope~as observed
in Fig. 5!. How good the relation~9! is is checked in Table I.

While the relation~9! tells us thatb is entirely determined
by the ratio of f 121 to l, Fig. 3 tells us that this quantity
does have a characteristic dependence on the gene fa
We conclude, therefore, that the relation~9! does not deter-
mine b entirely. There is a part that is gene specific. T
theoretical values ofb, Eq. ~9!, are reasonably close to th
values obtained from the CDS. The dependence ofb on f 1
andl of Eq. ~9! is gene independent. It is the universal part
b. The deviation from this universal part, even though sm
is established in Fig. 3 and 4. We define the quantityb8 that
gives a measure of this deviation through the relation

b5F f 121

l
1

1

2

~ f 121!2

l 2 Gb85bThb8 ~10!

where

bTh5F f 121

l
1

1

2

~ f 121!2

l 2 G .

We have retained the first two orders inf 1 / l @of Eq. ~8!#.
This is to make sure the higher orders inf 1 / l do not account
for the deviations. The values ofb8 appear in the last col
umm of Table I.

VII. b, b8, AND EVOLUTION

We get back to Table I for the CDS ofa-globin,
b-globin, insulin, and globulin. We notice the value off 1
increases as we walk up along the ladder of evolution. T
increase inf 1 increasesb while the text length of the CDS
does not change significantly in evolution. The results
insulin and the globulin CDS~Table I! carry at least one
exception. Interestingly, for both these CDS’s, the exc
tional species is the same, the rabbit. The rabbit hasf 1 andb
values greater than the human for these two CDS’s.
number of exceptions increases for the two globins. So
n,

05190
ily.

f
l,

e

r

-

e
e

fishes show greaterf 1 ~and henceb) values than the amphib
ian species, the African clawed frog. If we averageb for the
mammals we find it always exceeds the other groups.

On the other hand, if we compare theb8 values for each
of these four CDS’s,a-globin and globulin do not show an
clear pattern. In insulin, theb8 values increase as we mov
from fish to mammals through amphibia. But the Syri
hamster CDS is found to have lowerb8 than the clawed frog
CDS. Besides, the rat has greaterb8 compared to the human
In b-globin, the Atlantic salmon fish stands as an excepti
Otherwise, theb8 value increases from amphibia, birds
mammals. But here the representatives of amphibia and b
have the same value, and the lemur exceeds the value o
human. We conclude that the value ofb8, though indepen-
dent ofl and f 1, is less species specific, whereas the value
b does have evolutionary content.

VIII. GENE-SPECIFIC SIGNATURES

In Fig. 2 we showed thatb vs f 1 is a straight line when
the genes are not varied. When the genes are varied, bu
text length is held constant, the relationship ofb to f 1 is no
longer linear. The exponential fit is appropriate for this ca
This led us to conclude that there is a part tob that is gene-
specific.

In Fig. 3 we plottedb vs f 1, keeping the genes fixed fo
different organisms. The slopeDb/D f 1 is a characteristic of
the gene. There is a variation in the slope as we go from
gene to another. The regular, namely exponential form,
tained in Fig. 4 in the plot ofb vs f 1 , l being kept constant
tells us that the variations ofb, as we go from one gene t
another, is orderly.

b has a part that is gene independent. We isolate
universal component ofb theoretically. This part comes ou
to be a function of the text length of the sequence and
frequency of rank 1, i.e.,f 1. The quantityb8, defined in Eq.
10, measures the deviation of the actualb from this univer-
sal, gene-independent, contribution given in Eq. 10. If
gene-specific features are not dominant,b8 should be close
to one. Table I gives us the values ofb8. Clearly, the gene-
specific components inb could be as high as 40%~as in
insulin!. We are led to conclude that the methods of stati
cal linguistics, of the Zipf variety, have the potential in a
gorithms to identify genes from the databases.

The quantityb8 that isolates the gene-specific comp
nents ofb is, however, not unique to genes. Observations
b8 ~Table I! show that the range of variations inb8 do over-
lap for different genes. There continues to be undetermi
fluctuations in the values ofb8. Work is currently in
progress to isolate the unique gene-identifying signature
the Zipf approach.
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